

TeV

Connections

"Susy-Inspired" Models

- Phenomenology fixed by boundary conditions to RGEs at high scale
- Depends on β -functions
- (only "Active" sparticles contribute)

Approximate Solutions:

$$m_{\widetilde{q}}^2 = m_0^2 + 6.3(5.8) M_{\frac{1}{2}}^2$$
 $M_{\widetilde{g}} = 2.6 M_{\frac{1}{2}} = 3 M_{C_1} = 6 M_{N_1}$
 $M_{\widetilde{g}}, m_{\widetilde{q}} \to M_{\frac{1}{2}}, m_0$
 $m_0 < 0 \Rightarrow m_{\widetilde{\nu}} = 350 \text{ GeV}$

Explores possibilities beyond mSUGRA

TeV

Connections

"Susy-Inspired" Models

$$\bullet \ m_{\tilde{t}_1} = m_{\tilde{t}_2} = \sqrt{m_{\tilde{q}}^2 + m_t^2}$$

- $M_A, \tan \beta$, Stop determine Higgs sector
- $M_A \gg M_Z \Rightarrow SM$ -like light Higgs

- Alternatively, ignore SM-like Higgs in "exact" mSUGRA
- ullet But, typically, mSUGRA has $m_{\widetilde{q}} > M_{\widetilde{g}}$
- "Arbitrary" choice of slepton mass fixes leptonic BRs of C_1 (like-sign dileptons, etc)

TeV

Connections

Same in mSugra Framework

- $m_{H_1} = m_{H_2} = m_0$
- light Higgs boson highly correlated with other phenomenology

Specific Models

Low-Scale Parameter Sets

"Realistic"

Highly correlated

Not a simple high-scale picture

Recyclable

Can point to analysis improvements

TeV

Connections

Trilepton Results

- Sensitivity to variation of parameters
- ullet m_0 and $M_{rac{1}{2}}$ contours

- Sensitivity to variation of BRs
- Not from a fully consistent model

Model/Parameter Dependence

ullet Production and Decay Rates fixed by mixings in N,C sectors, squark/slepton masses

In general, heavy objects produced with central rapidity

• Efficiency fixed by mass splitting $M_{\widetilde{C}_1} \simeq M_{\widetilde{N}_2} - M_{\widetilde{N}_1}$ Decay distribution described by phase space, except near kinematic boundaries

Show dependence on

- $M_2 M_1$
- Choice of decay distribution
- $\tan \beta$

Parameter Tree

S. Mrenna

TeV

Connections

(boundary conditions

for RGEs at high scale)

Minimal SuperGravity Paradigm

(a)
$$m_L = m_E = m_Q = m_U = m_D = m_H = m_0$$

$$(b) M_B = M_W = M_g = M_{\frac{1}{2}}$$

$$(c) A_t = A_b = A_\tau = A_0$$

$$(d)$$
 $an eta$

(e)
$$\mu \Leftrightarrow m_{H_1}, m_{H_2}, \tan \beta$$

6

Parameter Tree

S. Mrenna

TeV

6

Parameter Tree

S. Mrenna

TeV

Parameter Tree

S. Mrenna

TeV

Parameter Tree

S. Mrenna

TeV

Caveats, other Considerations

- Fast Detector Simulations are needed when varying many parameters
- More powerful results from combining different search channels

Requires a reliable description of the Standard Model

Most powerful result:

Introduce generic particles with generic couplings and look *everywhere*

- Susy results can be recycled into (e.g.) Technicolor ones
- Other possibilities (turning on some or all RPV couplings, extended Susy sectors)

